Let ABCD be a square. Construct equilateral triangle PBA inside it. I is midpoint of AB. M,N lie on PA,PB such that triangle MIN is right isosceles at I. K,L are nine point center of triangles PBC,PAD. Prove that KLMN is a rectangle.

Solution by Takis Chronopoulos (10 January 2017, fixed mistypes at 14 January)

Lemma: ∢DCP=15°

Proof of the Lemma

(proven as problem 010, https://web.facebook.com/groups/parmenides52/permalink/1 026833390763700/)

Because IP is line of symmetry of the figure MN//AB, LK//AB ⇒ MN//LK⇒ MNKL is a trapezoid or a parallelogram

In order MNKL to be rectangle it is sufficient to prove that $\ensuremath{\mathsf{ML}}\xspace/\ensuremath{\mathsf{AC}}$

(then similarly KN//BD and since AC//BD, it would follow that ML //KN and since ACLAB, it would follow that MLLMN)

Let E,F be the midpoints of AC, AP respectively, Let PQ,CR,AS be the altitudes of the \triangle APC

(Lemma)∢PCD=15°⇒∢ACP=∢APC=75° (1) ⇒△APC isosceles ⇒median AS = Euler line of △APC

Let O,H be the circumcenter, orthocenter of \triangle APC respectively \Rightarrow Nine Point Circle Center L of \triangle APC is the midpoint of OH \Rightarrow LE=LF=LQ=LR=LS=R_9 (2)

```
O is the circumcenter of \triangleAPC\Rightarrow \triangleleftCAO=\triangleleftOCA=\triangleleftOPC=15° (3) \Rightarrow<OCP=75°-15°=60° and because of (2) \Rightarrow \triangleCOP is equilateral
```

```
\triangleCRP: <P=90°, <RPC=75° and because of (1) \Rightarrow<HCS=15°\Rightarrow<QCH=75°-15°=60° (4) <CQP + <HSC = 90°+ 90°=180°\Rightarrow CQHS cyclic, (4) \Rightarrow<HSQ=< QCH=60° and because of (2) \Rightarrow \triangleQLS is equilateral
```

$$\Rightarrow$$
 CQHS cyclic \Rightarrow

$$\Rightarrow < EQL = 180^{\circ}-60^{\circ}-75^{\circ} = 45^{\circ}$$
 and because of (2)

Similarly because AS is the line of symmetry of $\triangle ACP$ \Rightarrow <LFR=45°, <FLR= 90° and \triangle RLS is equilateral

So \Rightarrow ^EFL is equilateral
 \Rightarrow

Obviously
$$\angle AIE = \angle AEI = 45^{\circ}$$
, (5),(6) \Rightarrow \Rightarrow

E,F midpoints of AC, AP respectively \Rightarrow EF// CP \Rightarrow <MFE= <APC =75° (8)

$$^{\triangle}$$
MFE: (7),(8) \Rightarrow < EMF= 180°-30°-75°=75° =< MFE \Rightarrow $^{\triangle}$ MFE isosceles \Rightarrow ME=MF and because of (6)

⇒ ME=EF=EL⇒ E is the circumcenter of △MFL

⇒∢MLF=∢MEF/2=30°/2= 15°

 $\Rightarrow \not \in MLO = \not \in OLF - \not \in MLF = 30^{\circ} - 15^{\circ} = 15^{\circ}$ and because of (3) $\Rightarrow ML//AC$, qed

